Microsoft Word - Control Flow-based Malware Variant Detection - Final Version.docx
نویسندگان
چکیده
Static detection of malware variants plays an important role in system security and control flow has been shown as an effective characteristic that represents polymorphic malware. In our research, we propose a similarity search of malware to detect these variants using novel distance metrics. We describe a malware signature by the set of control flow graphs the malware contains. We first experiment with string based signatures. We then try using vector and set of strings based signatures. Firstly, we use a distance metric based on the distance between feature vectors. The feature vector is a decomposition of the set of graphs into either fixed size k-subgraphs, or q-gram strings of the high-level source after decompilation. We use this distance metric to perform pre-filtering. We also propose a more effective but less computationally efficient distance metric based on the minimum matching distance. The minimum matching distance uses the string edit distances between programs’ decompiled flow graphs, and the linear sum assignment problem to construct a minimum sum weight matching between two sets of graphs. We implement the distance metrics in a complete malware variant detection system. The evaluation shows that our approach is highly effective in terms of a limited false positive rate and our system detects more malware variants when compared to the detection rates of other algorithms.
منابع مشابه
DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers
To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...
متن کاملControl Flow Graphs as Malware Signatures
This study proposes a malware detection strategy based on control flow graphs. It carries out experiments to evaluates the false-positive ratios of the proposed methods. Moreover, it presents some insight to establish detection methods sound with respect to some obfuscation techniques.
متن کاملAnnotated Control Flow Graph for Metamorphic Malware Detection
Metamorphism is a technique that mutates the binary code using different obfuscations and never keeps the same sequence of opcodes in the memory. This stealth technique provides the capability to a malware for evading detection by simple signature-based (such as instruction sequences, byte sequences and string signatures) anti-malware programs. In this paper, we present a new scheme named Annot...
متن کاملMalware Detection using Windows API Sequence and Machine Learning
Monitoring the behavior of program execution at run-time is widely used to differentiate benign and malicious processes executing in the host computer. Most of the existing run-time malware detection methods use the information available in Windows Application Programming Interface (API) calls. The proposed malware detection system uses the Windows API call sequence. A 3rd order Markov chain (i...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013